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Towards a metric for rotating spacetime

Spherically Symmetric vacuum sol around a BH:

Schwarzschield metric (1915)

Vacuum Solution around a rotating BH:
Kerr metric (1963)

How do we discuss the effect of a spinning BH
when an exact solution wasn't found yet?
(Lense & Thirring 1918)




Perturbation Solution via Green function

(Lorentz gauge) —

hyy = =161 GTy,.

The Green function G(x? — y?) for the d’ Alembertian operator [ is the solu-
tion of the wave equation in the presence of a delta-function source:

0,G(x% —y9) = 8W (7 — y9), (7.126)

Remember The Green Function to a Laplace Operator in solving electric fields is
a delta function!

setting elapsed time as t, and separating the time & space coordinates give

_ 1
h,, R x :4G/

time-independent metric & momentum tensor (with diagonal terms)
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Perturbation Solution-first order
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The field at observer location (r) is determined by the energy
momentum tensor integrated over a source

what approximations can be made when every bit and bob of the
source is far, far away (delta r << r)?

Taylor expansion to first order in delta r/r or y/x



Perturbation Solution-first order
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integrated over an entire source (small)

T
Where M = | Tz, Jiy = | tiamz T™d%z
Corresponding to a perturbation with off-diagonal terms but without the strain

The integration tells you what these abstract values (w, \Phi) really corresponds to for the
property of a source (Mass M and Angular momentum J) ~ ;42307 x U



Precession of a Gyroscope ([t ¥£)

Very interesting and profound effect is on a free-falling gyroscope

We learned in DAXUEWULI that a normal gyroscope will precess, if
gravity gives it a constant torque from center of mass

But what about a freely falling gyroscope? in the non-inertial frame, so-
called ficticious force will cancel out the gravitational torque

Suppose you are slowly falling towards the Earth
rotating with an angular momentum s not parallel
with the Earth's spin J (not very enjoyable)

will your angular momentum vector still precess?

Newtonian mechanics: No
GR: Yes (Lense & Thirring 1918)



Analogy with Lamor Precession

Let's first take one particle rotating about the spin axis (while

i falling) with some specific angular momentum (e.g. YOUR
EYEBALL)
® |
Caroll says its Equation of motion goes as:
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time-independenct Higher order in h
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Where the gravito-electric field & gravito-magnetic field is:
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Analogy with Lamor Precession

compare with Lorentz force!
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'l O-:# ' What will a charged particle under Lorentz force do:
v Overall being accelerated by E, but the spin will
‘\ J rotate about the axis of B with Lamor precession
| rate (@ known result)
47 translates into ~ 1 .
- ) Q — iB | > Q — —H
o [ - 2m 2




Analogy with Lamor Precession
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t What is this ) = — H here? H = (V x 1)’
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Analogous to the magnetic field B
W7 generated by magnetic DIPOLE!
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‘_ - only this one REALLY centers the
" " south pole and the north pole




Node Precession of a Circular Orbit

Consider a large inclined ({i&}) orbit
around the central body

Orbital plane (#1i& ™) is inclined with
respect to the central body's equatorial
plane (Fri& M), they intersect at the
Ascension Node

The LT torque (different at every
location and orientation!) will give an
overall effect

that causes the plane to precess at

L 26T
Qrr =

Ascension Node (B9 &, A3 H) ?”3

(not trivial to calculate!)




Accretion Disk

Accretion Disks:

Matter collapsing towards a central body (protostar, protoplanet, BH, SMBH)
but falls onto a mutual plane due to angular momentum conservation
Matter continues to spiral inwards, potential energy -> light and heat

How can we mathematically describe them?



Accretion Disk in the simplest form

First approximation

« Totally axisymmetric, no thickness
* many many gas particles orbiting the central body at different radius, each on
Keplerian orbit (but then they don't spiral inwards anymore!)

Second approximation

Due to viscous force (¥§5% /1) , there will be an inward velocity which
can be described by a function of of r that is nearly zero (specific form
does not matter!)
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What is viscous force?

Proportional to the shear
or velocity difference between
layers

Leading to energy and angular
momentum dissipation and
spiralling in of some materials



Inclined Accretion Disk around a BH

Consider a simple way of forming an accretion disk:

 First, infinite materials at a same very, very large radius start with fixed precession
angle, but their orbits are intrinsically inclined with some angle

* Then, they continuously drift inwards one after another

without LT: they stay on the same plane with zero precession phase
with LT: all of them will experience a unigue precession phase at a unique radius of r

t(r) B d
) A Qprdt =2GJ | r3=

0 o0 Uy

This is the Precession Phase, not the inclination angle or the
position angle, only tells you how much the total orbit (with
fixed inclination) has shifted



Inclined Accretion Disk around a BH

0.6 I | ; : | | u | = (Bardeen & Petterson 1975)

0.5+ angle of inclination =30°

0" = —2.4 X 10~5a85 N 205 M /5y, 25

i1 A cross section of the accretion disk after
0.3k some time, All the orbits are tilted 30 degrees
T with respect to the equtorial plane of the BH,
0.2+ e but they “touch bottom” and “touch ceiling”
5 L at different locations so the disk is distorted!

A

‘O.I_ \\ il

-0.2f S -

| ] ] L N | | | 1

O Ol 02 03 04 05 06 07 08 092 10
r(arbitrary units)

Fi1c. 1.—A cross section of an accretion disk which far from the

black hole is tilted at an angle 30° with respect to the equatorial
plane of the black hole. The units of the cylindrical coordinates »

=0.3




Inclined Accretion Disk around a BH
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F16. 3.—Plotted as a function of 7, the inclination angle 8 and
the total precession angle v of a ring of radius » of an accretion
disk whose outer edge is tilted at an angle 3. The curve for 8
shows that at radius 500}/ the disk is almost completely relaxed
into the equatorial plane of the black hole; this is a result of the
presence of viscous forces.

But, since viscous torque is against any kind of
shear, it will also flatten the difference in
inclinations (velocity difference in z directions!)

Adding such a torque will result in change of
inclination angle -> around the BH the disk
connects to the midplane

which explains double-plane accretion disks




Summary

Linear Approximation of Rotating Spacetime

M ! . . M o
ds? = —(1- QG—)dt2 - (QEJHJRLE—R)(ddeJ + dx?dt) + (1 + QG—)(d:EJd:EJ)
r r r

Quasi-Lamor precession

G — %g A=21s(7e

r3

Node precession of Circular orbits

Twisted Accretion Disks

Free LT precession causes an inclined disk to become
completely distorted,;

Viscous force will smooth out the profile so the disk
will have one outer inclined outer part, and one inner
part flattened to the equatorial plane
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